

Transition Metal Complexes in Organic Synthesis, Part 50.1

Asymmetric Catalytic Complexation of 1-Methoxycyclohexa-1,3-diene by the Tricarbonyliron Fragment Using Amino Acid-Derived 1-Azabuta-1,3-dienes

Hans-Joachim Knölker* and Daniela Herzberg

Institut für Organische Chemie, Universität Karlsruhe, Richard-Willstätter-Allee, 76131 Karlsruhe, Germany

Received 3 February 1999; revised 3 March 1999; accepted 10 March 1999

Abstract: L-Amino acid esters as chiral auxiliaries in the asymmetric complexation of 1-methoxycyclohexa-1,3-diene with pentacarbonyliron afford the *R*-enantiomer of the corresponding planar chiral tricarbonyliron complex in up to 24% ee.

© 1999 Elsevier Science Ltd. All rights reserved.

Tricarbonyliron-cyclohexa-1,3-diene complexes have found versatile applications in organic synthesis.² The enantiopure complexes represent useful starting materials for asymmetric synthesis in which the planar chirality of the metal complex is transformed into central chirality at carbon.³ Optically active tricarbonyliron-diene complexes can be prepared directly by enantioselective complexation of prochiral dienes.⁴ We introduced (η^4 -1-azabuta-1,3-diene)tricarbonyliron complexes as novel tricarbonyliron transfer reagents.⁵ The 1-azabuta-1,3-dienes are highly efficient catalysts for the catalytic complexation of buta-1,3-dienes and cyclohexa-1,3-dienes with pentacarbonyliron.⁵ An important application is the asymmetric catalytic complexation of prochiral dienes using chiral 1-azabuta-1,3-dienes as catalysts.^{1,6} This reaction represents the first example of an asymmetric catalysis providing planar-chiral transition metal π -complexes.⁷

In our investigation of the asymmetric catalytic complexation of 1-methoxycyclohexa-1,3-diene we found that 1-azadienes prepared from cinnamaldehyde and a simple centrally chiral amine, e.g. (R)- or (S)-phenylethylamine, led only to low asymmetric inductions of 6% ee. On the other hand, 2,3,4,6-tetra-O-pivaloyl- β -D-galactopyranosylamine and the planar chiral 2-alkoxy-2'-amino-1,1'-binaphthyl as chiral auxiliaries provided up to 28% and 32% ee, respectively. Herein we describe the use of amino acid esters as chiral auxiliaries in the asymmetric catalytic complexation of 1-methoxycyclohexa-1,3-diene by the tricarbonyliron fragment.

Scheme 1

Condensation of L-1 with cinnamaldehyde 2 in benzene at room temperature in the presence of molecular sieves $(4 \text{ Å})^8$ provided the chiral 1-azadienes L-3 in most cases quantitatively (Scheme 1, Table 1).

The asymmetric catalytic complexation of 1-methoxycyclohexa-1,3-diene (4) was investigated by using the reaction conditions (4 eq. Fe[CO]₅, benzene, reflux, 0.25 eq. of catalyst) previously applied (Scheme 2). The ee was accurately determined by separation of the two enantiomeric complexes (R)-5 and (S)-5 via HPLC on a permethylated β -cyclodextrin column. In all cases the L-amino acid esters as chiral auxiliaries in the catalytic complexation led to an excess of the R enantiomer of complex 5. We could confirm that the ee of the planar chiral complex is independent of the turnover of the catalytic complexation. Thus, using a certain catalyst an increase of the reaction time results in a higher yield of the product with the same enantiomeric excess.

L-1	\mathbb{R}^1	R ²	L-3, Yield [%]	$[\alpha]_{\mathbb{D}}^{20}$ (c, solvent)	reaction conditions	5, Yield [%]	ee [%] a
_		_			no catalyst, 9 d	2	0
a	CH ₂ Ph	t-Bu	90	-249.8 (0.53, CHCl ₃)	0.25 eq L-3a, 67 h	36	4 (R)
b	i-Pr	Me	99	-119.4 (0.50, CHCl ₃)	0.25 eq L-3b, 88 h	91	12 (R)
c	(S)- s -Bu	Me	97	-123.6 (0.82, CHCl ₃)	0.25 eq L-3c, 67 h	72	8 (R)
d	t-Bu	Me	97	-96.2 (0.58, CHCl ₃)	0.25 eq L-3d, 67 h	61	15 (R)
e	t-Bu	t-Bu	96	$-86.1 (0.65, C_6H_6)$	0.25 eq L-3e, 67 h	45	15 (R)
e	t-Bu	t-Bu	96	-86.1 (0.65, C ₆ H ₆)	1.00 eq L-3e, 67 h	97	24 (R)

Table 1. Synthesis of the amino acid-derived 1-azadienes L-3 and application to catalytic complexation.

Scheme 2

The azadiene L-3a provided complex 5 with 4% ee of the R enantiomer. Catalyst L-3b afforded complex (R)-5 in 91% yield and 12% ee. Catalyst L-3c with isoleucine methyl ester as chiral auxiliary gave an induction of 8% ee and L-3d resulting from tert-leucine methyl ester provided 15% ee. The corresponding tert-butyl ester L-3e afforded the same asymmetric induction. Finally, complexation of the prochiral diene 4 with pentacarbonyliron in the presence of 1 eq. of L-3g led to a further increase of the asymmetric induction and provided the tricarbonyliron complex (R)-5 in 97% yield with 24% ee of the R enantiomer. The blank experiment (2% yield after 9 d at reflux in benzene) indicates that this additional increase of asymmetric induction compared to the result of the catalytic complexation is not due to a competing uncatalyzed complexation of the diene.

Acknowledgements: This work was supported by the *Deutsche Forschungsgemeinschaft* (Kn 240/5-3) and the *Fonds der Chemischen Industrie*. We are grateful to Professor K. Drauz (Degussa AG, Hanau) for a generous gift of L-tert-leucine and the BASF AG, Ludwigshafen, for a constant supply of pentacarbonyliron.

References and Notes

- 1. Part 49: H.-J. Knölker, H. Goesmann, H. Hermann, D. Herzberg, G. Rohde, Synlett 1999, in print.
- A. J. Pearson, Iron Compounds in Organic Synthesis; Academic Press: London, 1994; Chap. 4 and 5. H.-J. Knölker in Transition Metals for Organic Synthesis; M. Beller, C. Bolm, Eds.; Wiley-VCH: Weinheim, 1998; Vol. 1, Chap. 3.13, p. 534. H.-J. Knölker, Chem. Soc. Rev. 1999, 28, in print.
- 3. See for example: A. J. Birch, L. F. Kelly, D. V. Weerasuria, J. Org. Chem. 1988, 53, 278.
- 4. A. J. Birch, W. D. Raverty, G. R. Stephenson, Organometallics 1984, 3, 1075.
- 5. H.-J. Knölker, G. Baum, N. Foitzik, H. Goesmann, P. Gonser, P. G. Jones, H. Röttele, *Eur. J. Inorg. Chem.* 1998, 993. H.-J. Knölker, E. Baum, P. Gonser, G. Rohde, H. Röttele, *Organometallics* 1998, 17, 3916.
- 6. H.-J. Knölker, H. Hermann, Angew. Chem. 1996, 108, 363; Angew. Chem. Int. Ed. Engl. 1996, 35, 341.
- 7. For some leading references, see: Catalytic Asymmetric Synthesis; I. Ojima, Ed.; VCH: Weinheim, 1993.
- 8. S. Hashimoto, S. Yamada, K. Koga, Chem. Pharm. Bull. 1979, 27, 771.
- 9. H.-J. Knölker, P. Gonser, T. Koegler, Tetrahedron Lett. 1996, 37, 2405.
- 10. (R)-5: A solution of 4 (110 mg, 1.00 mmol), pentacarbonyliron (526 μl, 784 mg, 4.00 mmol), and L-3e (301 mg, 1.00 mmol) in dry, degassed benzene (15 ml) was heated at reflux for 67 h under argon (exclusion of light). The cold reaction mixture was filtered through a short path of Celite and the solvent was evaporated in vacuum. Flash chromatography (pentane) of the residue on silica gel provided (R)-5 (243 mg, 97%) as a yellow oil; [α]_D²⁰ = -32.2 (c = 1.37 in CHCl₃).

^a ee values as determined by chiral HPLC (absolute configuration of the excess enantiomer).⁹